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Abstract: The Type I, II and hybrid (I+II) seesaw mechanism, which explain why neutri-

nos are especially light, are consequences of the left-right symmetric model (LRSM). They

can be classified by the ranges of parameters of LRSM. We show that a nearly cancella-

tion between general Type-(I+II) seesaw is more natural than other types of seesaw in the

LRSM if we consider their stability against radiative correction. In this scenario the small

neutrino masses are due to the structure cancellation, and the masses of the right handed

neutrino can be of order of O(10)TeV. The realistic model for non-zero neutrino masses,

charged lepton masses and lepton tribimaximal mixing can be implemented by embedding

A4 flavor symmetry in the model with perturbations to the textures.
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1. Introduction

The fact that neutrinos have very small masses has been established by a number of neutrino

oscillation experiments [1] in the past decade, which is an important evident to go beyond

the Standard Model. In order to generate very tiny neutrino masses, the very popular

explanation is the seesaw mechanism [2].

In the so-called Type-I seesaw [2], extra very heavy Majorana right handed neutrinos

(RHN) are introduced. When integrating them out, the neutrino mass is approximately

mν ∼ m2
D/mR, so we assume that the mD (the neutrino Dirac mass) is of the electroweak

scale, i.e. mD ∼ O(102 GeV ), we need the RHN mass mR ∼ O(1016 GeV ) which is hopeless

to reach to direct test this mechanism. In the Type-II seesaw (triplet seesaw) [3], a heavy

Higgs triplet ∆ is introduced to play the similar role of heavy right handed neutrino to

suppress the neutrino masses, we have mν ∼ v2/m∆, where m∆ ∼ O(1016 GeV ) is the mass

of Higgs triplet. In a general hybrid Type-(I+II) seesaw model, both terms make contri-

butions to the neutrino masses. The crucial feature of such mechanisms are introducing

heavy particles to suppress the neutrino masses, but the smallness of neutrino mass needs

them to be too heavy to have any signals in future colliders.

Possible compromise between the impossible collider signals of such heavy particles and

the smallness of neutrino masses is discussed in recent literatures in the framework of hybrid

Type-(I+II) seesaw [4], where the small neutrino masses is from the structural cancellation,

while suppression plays no role. In such scenario, the introduced heavy particles can be light
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enough to be direct produced in future colliders without violating the current bounds [5],

so the possibilities have not been ruled out by experimental limits so far.

These types of seesaw are consequences of the left-right symmetric model (LRSM) [6],

which is a possible extension of SM. In the model, unlike the SM that has only SU(2) left

handed chiral matter, the right handed sector under Non-Abelian SU(2) representation

are also introduced and correlated to the left handed sector. The LRSM not only leads

to the seesaw mechanism but also provides explanation of the observed maximal P and

C violation at low energy weak interaction, and is therefore likely in certain sense to be

the final theory. The type of seesaw deduced from LRSM is determined by the space of

parameters of the model. If we consider the stability of the parameters under the radiative

correction, a model is ”natural” if it is stable against the quantum correction, so fine-tuning

for parameters is not needed. Before the mechanism can be tested directly in experiments,

the naturalness is inevitable an important criteria for our model buildings.

In this paper, we will deduce the three types of seesaw in the LRSM and classify them

by the ranges that the parameters locate. The 1-loop quantum correction of the parameter

is evaluated and we find that the small neutrino mass from nearly cancellation in Type-

(I+II) is more ”natural” than other types of seesaw in the limit of small couplings in Higgs

potential. So unlike the literature [4] where the cancellation relation is imposed by hands,

the structure cancellation in LRSM is a natural result of the model. Therefore, in this

scenario, the RHN can be light and be of order of O(10)TeV. Finally, non-zero neutrino

masses, charged lepton masses and tribimaximal mixing [7] are generated by perturbations

and embedding an extra A4 [8] flavor symmetry into the model.

2. The model

2.1 The left-right symmetric model

The left-right symmetric model is based on the extended gauge group GLR = SU(2)L ⊗
SU(2)R ⊗ U(1)B−L, in which a Higgs bi-doublet Φ and left (right) Higgs triplet ∆L(R) are

introduced and with the representation assignments

Φ ∼ (2, 2, 0), ∆L ∼ (3, 1, 2), ∆R ∼ (1, 3, 2). (2.1)

Under a discrete left-right symmetry, lL ↔ lcR, ∆L ↔ ∆R and Φ ↔ ΦT , the invariant

Lagrangian of the Yukawa interaction term is

−L = ylLΦlR + ỹlLΦ̃lR +
1

2
f [lLiτ2∆Ll

c
L + lcRiτ2∆RlR] + h.c., (2.2)

where lL(R) = ( νL(R) eL(R) )T is the lepton doublet, Φ̃ = τ2Φ
∗τ2, lcL(R) ≡ ClL(R)

T
with C

being the charge-conjugation matrix. At first stage, the symmetry spontaneously broken

into SU(2)L × U(1)Y by a non-zero vacuum expectation value (VEV) of ∆R , leading to

a heavy Majorana mass for right handed neutrinos. The second stage, the Φ develops

VEV, breaking the symmetry to relic U(1)em. The developed non-zero VEV consistent

with U(1)em electromagnetic invariance are

〈∆L〉 =

(

0 0

vL 0

)

, 〈∆R〉 =

(

0 0

vR 0

)

, 〈Φ〉 =

(

v 0

0 v′

)

. (2.3)
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The measurement of the ρ parameter [9] constrains the tree-level contribution of the Higgs

triplet, vL . 1GeV , which is much smaller than the electroweak scale v ≃ 174GeV , and

we will work in the approximation v′ ≪ v. Integrating out the heavy fields the effective

mass of neutrino can be written as the general Type-(I+II) seesaw formula

Mν ≃ML −MDM
−1
R MT

D = vLf − v2

vR
yf−1yT . (2.4)

The dominant contribution from the first or second term determines the type of seesaw.

In the model the charged lepton and Dirac neutrino mass matrix are simply obtained as

Me = ỹvI and MD = yvI (I is the identity matrix), which we will discuss and implement

by introducing flavor symmetry in section 4.

2.2 Higgs potential

Our aim here is to show the relations between the VEVs of the Higgs fields in LRSM, for

this purpose, let us write the Higgs potential involving Φ and ∆L(R). The most general

renormalizable Higgs fields potential has the quadratic and quartic coupling terms and can

not have any trilinear terms. So consistent with the transformation properties as eq. (2.1)

and discrete left-right symmetry, the Higgs potential can be written as [10]

V (Φ,∆L,∆R) = −µ2
ijtr[Φ

†
iΦj] + λijkltr[Φ

†
iΦj]tr[Φ

†
kΦl] + λ′ijkltr[Φ

†
iΦjΦ

†
kΦl]

−µ2tr[∆†
L∆L + ∆†

R∆R] + ρ1[(tr[∆
†
L∆L])2 + (tr[∆†

R∆R])2]

+ρ2

(

tr[∆†
L∆L∆†

L∆L] + tr[∆†
R∆R∆†

R∆R]
)

+ ρ3tr[∆
†
L∆L∆†

R∆R]

+αijtr[Φ
†
iΦj ]

(

tr[∆†
L∆L] + tr[∆†

R∆R]
)

+βij

(

tr[∆†
L∆LΦiΦ

†
j ] + tr[∆†

R∆RΦiΦ
†
j]

)

+γij

(

tr[∆†
LΦi∆RΦ†

j] + h.c.
)

, (2.5)

where the sums over i, j, k and l run from 1 to 2, with Φ1 = Φ and Φ2 = Φ̃. To recover the

left-right symmetry and hermicity condition, the couplings satisfy the constraints,

µij = µji, λ1212 = λ2121, λiijk = λiikj,

λijkk = λjikk, λ′ijkl = λ′lijk = λ′klij = λ′jkli,

αij = αji, βij = βji, γij = γji.

(2.6)

After the Higgs fields develop their VEV, we obtain

V = −µ2(v2
L + v2

R) +
ρ

4
(v4

L + v4
R) +

ρ′

2
v2
Lv

2
R +

α

2
(v2

L + v2
R)v2 + γvLvRv

2, (2.7)

where the approximation v′ ≪ v is used, and the coefficients are

γ = 2γ12,

α = 2(α11 + α22 + β11),

ρ = 4(ρ1 + ρ2),

ρ′ = 2ρ3. (2.8)
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From the minimizing condition ∂V
∂vL

= ∂V
∂vR

= 0, if vL 6= vR, we get the relations for VEV

of Higgs fields,

vLvR =
γ

κ
v2, (2.9)

where κ = ρ− ρ′. The mass mL,mR and mD will be of order of vL, vR and v, respectively.

In the next section, we will classify the types of seesaw mechanism generated from LRSM

by the values of the ratio of Higgs particle self-couplings γ
κ
.

3. The seesaw type and stability

We now discuss their contributions to the neutrino masses. Substituting the relation

eq. (2.9) into the general Type-(I+II) seesaw formula eq. (2.4), we get

mν =

(

f

(

γ

κ

)

− y2

f

)

v2

vR
. (3.1)

According to the formula, following classification can be given.

1) Type-I seesaw: f(γ
κ
) ≪ y2

f
. It responds to the case of mν ≃ −y2

f
v2

vR
= −mDm

−1
R mT

D

dominant, the small neutrino mass is from the suppression of heavy vR.

2) Type-II seesaw: f(γ
κ
) ≫ y2

f
. The term mν ≃ vLf = mL dominant, while mDm

−1
R mT

D

can be relatively neglected, i.e. the small neutrino mass is due to the smallness of vL.

3) Nearly cancellation Type-(I+II) seesaw: f(γ
κ
) ≃ y2

f
. The term mL and mDm

−1
R mT

D

are comparable in magnitude and will nearly cancel their contributions to get small

neutrino mass, we will see that this scenario is radiative stable.

However it is classical value at tree level, here we want to explore the behavior of the γ
κ

defined at the scale µ0 under the radiative correction. The correction of γ and κ come

from the 1-loop correction of the quartic coupling of operators ∆LΦ∆RΦ and ∆∆∆∆,

respectively. The renormalization group equation for γ and κ take the forms

µ
dγ

dµ
=

1

16π2

[

(a1α
2 + a2β

2 + a3γ
2) + (b1α+ b2β + b3γ)y

2

+(c1α+ c2β + c3γ)f
2 + (d1α+ d2β + d3γ)g

2 + e1g
4 + e2f

2y2
]

,

µ
dκ

dµ
=

1

16π2

[

(a′1ρ
2
1 + a′2ρ

2
2 + a′3ρ

2
3) + (b′1ρ1 + b′2ρ2 + b′3ρ3)f

2

+(c′1ρ1 + c′2ρ2 + c′3ρ3)g
2 + d′1g

4 + d′2f
4
]

, (3.2)

in which the coefficients a, b, c, d, e are constants of order O(1) that are determined by com-

puting the corresponding 1-loop Feynman diagrams. αij, βij , γij , ρi are coupling constants

in Higgs potential eq. (2.5) and g the gauge coupling.

The Yukawa couplings f and y are of order O(1), but the typical coupling constants in

Higgs potential and the gauge coupling are generally assumed to be much smaller than that.
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In fact, for large couplings, higher order or non-perturbative correction should be considered

and we will not discuss them here. So we assume in this paper that in eq. (3.2) they can

be approximately dropped, while only the loops that attribute to Yukawa couplings f, y

play dominant role. We estimate the magnitude of the 1-loop corrections at scale µ to be

δγ ≃ −nff
2y2

16π2
ln

(

µ

µ0

)

,

δκ ≃ −nff
4

16π2
ln

(

µ

µ0

)

, (3.3)

where nf is the number of fermion species. The parameter γ
κ

is stable only when

0 = δ
(γ

κ

)

=
(δγ)κ − γ(δκ)

κ2
, (3.4)

so we get the relation

γ

κ
≃ y2

f2
, (3.5)

which is consistent with the nearly cancellation type f(γ
κ
) ≃ y2

f
. In other words, if mν ≃ 0

in eq. (3.1) arises from the cancellation between f(γ
κ
) and y2

f
, because of eq. (3.4) it will

lead to the stable value of γ
κ

that suppresses its radiative correction. Therefore, it is

indicated that the scenario of nearly cancellation Type-(I+II) seesaw is more natural than

other types of seesaw when we consider the factor of their stability. The neutrino mass is

vanished when the cancellation relation γ
κ

= y2

f2 is exactly hold as is shown in eq. (3.1).

The vanishing mν can also eliminate another unnaturalness that the texture of f is

not uniquely determined in LRSM [11], e.g. if f is allowed, then so is f̂ = mν
vL

− f . We can

see that when mν = 0, f is uniquely determined up to an unimportant phase or sign.

In this case, the vR does not need to play the role of suppressing the neutrino mass, the

RHN mass can be scale of O(10)TeV by the constraints of vL . 1GeV. This possibility that

vR can be reachable TeV scale has not been ruled out by current bounds of experiments [5].

4. Non-zero neutrino masses and tribimaximal mixing

The textures of Yukawa matrices discussed above are simple, in which the Dirac neutrino

masses and the ones coming from the left (right) Higgs triplet are degenerate,

MD = yvI,

ML(R) = fvL(R)I. (4.1)

The neutrino is massless when the cancellation relation is hold. However, the masses of

neutrino are not trivially vanished. So we will discuss a deviation from this scenario by

perturbations and introducing flavors symmetry to get a more realistic model.

We embed the extra A4 symmetry [8] into LRSM by the assignments

lL(R), l
c
L(R) ∼ 3, Φ ∼ 1, ∆L(R) ∼ 1, (4.2)
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where, in A4 group, 3 stands for the real three-dimensional irreducible representation and

1 for the trivial one in the three inequivalent one-dimensional representations 1, 1’, 1”. So

the invariant Yukawa Lagrangian for their couplings is

y(lLlR)1Φ + ỹ(lLlR)1Φ̃ +
1

2
iτ2f

(

(lLl
c
L)1∆L + (lcRlR)1∆R

)

+ h.c., (4.3)

in which the tensor product notations and properties of A4 can be found in appendix A.

Then the above assumptions eq. (4.1) as well as the lepton mass matrix Me = ỹvI can be

achieved automatically, and they preserve the form of Higgs potential eq. (2.5) since the

Higgs fields now are singlets of A4.

In order to obtain non-trivial mixing, we need to introduce another scalar Σ ∼ 3 of A4

to generate off-diagonal elements and assign the gauge group representation Σ ∼ (2, 2, 0)

to it. The extra Higgs potential involving Σ and the couplings between Σ and Φ,∆L(R) are

list in the appendix B. The extra terms that contribute to the eq. (2.7) have no effect on

the relation eq. (2.9), so the results in the previous sections are still valid.

Now the invariant Lagrangian of couplings between leptons and Σ is written as

h(lLlR)3s
· Σ, (4.4)

in which the subscript 3s denotes the three dimensional symmetric tensor product as shown

in appendix A. Expanding it into matrix in flavor basis we obtain the extra contributions





0 hvΣ3
hvΣ2

hvΣ3
0 hvΣ1

hvΣ2
hvΣ1

0



 , (4.5)

where vΣi = 〈Σi〉. In the assumption of vΣ1
= vΣ3

= 0 and hvΣ2
= δ 6= 0, the matrix Me

and MD have similar forms

Me(MD) = ỹ(y) vI +





0 0 δ

0 0 0

δ 0 0



 . (4.6)

Now, a deviation of Me from MD is needed by perturbations, in general the vanished

elements will have non-zero values ǫ, and δ is perturbed to δ′ and δ′′,

Me =





ỹv ǫ12 δ′′

ǫ21 ỹv ǫ23
δ′ ǫ32 ỹv



 . (4.7)

We assume that ǫ21, ǫ32 ≃ δ′′ and ǫ12, ǫ23 ≃ δ′, then we get the mass matrix of charged

leptons that can be diagonalized by the unitary matrix

Ve =
1√
3





1 1 1

1 ω ω2

1 ω2 ω



 , (4.8)
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in which ω = e
2πi
3 , i.e. V †

e MeVe = diag(me,mν ,mτ ), where

me = ỹv + δ′ + δ′′,

mµ = ỹv + (ωδ′ + ω2δ′′),

mτ = ỹv + (ω2δ′ + ωδ′′). (4.9)

Under the condition of cancellation relation γ
κ

= y2

f2 and non-diagonalized MD eq. (4.6),

a non-zero neutrino mass matrix now becomes

Mν = ∆mI − 2fvLδ

yv





δ
2yv

0 1

0 0 0

1 0 δ
2yv



 , (4.10)

where ∆mI is a perturbation. Mν can be diagonalized by the unitary matrix

Vν =
1√
2





1 0 −1

0
√

2 0

1 0 1



 . (4.11)

we get

Mdiag
ν = V T

ν MνVν = diag

(

∆m− 2fvLδ

yv

(

1+
δ

2yv

)

,∆m,∆m+
2fvLδ

yv

(

1− δ

2yv

))

.(4.12)

The MNS matrix [12] is then obtained as

UMNS = V †
e Vν =







2√
6

1√
3

0

− ω√
6

ω√
3

− eiπ/6

√
2

− ω2

√
6

ω2

√
3

e−iπ/6

√
2






, (4.13)

which is the tribimaximal mixing matrix up to a phase and hence fits the neutrino oscillation

data well.

5. Conclusions

The Type I, II and hybrid (I+II) seesaw mechanisms can be deduced from the LRSM, and

classified by the ranges of the parameter γ
κ
, which represents the ratio of Higgs particle

self-couplings. Assuming that the Yukawa coupling y, f are of order O(1), then γ
κ
≪

(

y
f

)2

responds to Type-I seesaw, γ
κ
≫

(

y
f

)2
to Type-II seesaw and γ

κ
≃

(

y
f

)2
to the comparable

or nearly cancellation Type-(I+II) seesaw. In the limit of weak couplings in Higgs potential,

we find that the parameter region γ
κ
≃

(

y
f

)2
≃ O(1) is more stable against the radiative

correction with respect to other regions, hence the nearly cancellation Type-(I+II) is more

natural than other types of seesaw in the LRSM.

In the framework of nearly cancellation Type-(I+II) seesaw, the small neutrino masses

arise from the cancellation between the contribution of the Type-I and Type-II. In this

scenario, the RHN masses can be of order of O(10)TeV and be reachable in future colliders.
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We give a realization of this kind of cancellation scenario by introducing an extra A4 flavor

symmetry to govern the textures of Yukawa coupling matrices. A realistic model that gives

non-zero neutrino masses, charged lepton masses and lepton tribimaximal mixing is also

implemented via introducing perturbations to the textures.
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A. Basic properties of A4

The A4 group has a real three dimensional irreducible representation 3, and three inequiva-

lent one dimensional representation 1,1′,1′′, in which 1 stands for the trivial representaion,

and 1′ and 1′′ are the non-trivial ones and complex conjugates to each other.

The multiplication rules of their non-trivial tensor products are given as

3⊗ 3 = 3s ⊕ 3a ⊕ 1⊕ 1′ ⊕ 1′′ and 1′ ⊗ 1′ = 1′′, (A.1)

in which the subscript s(a) stands for the symmetric (asymmetric) products. If we set

ψi, φi ∼ 3, then

(3 ⊗ 3)1 = ψ1φ1 + ψ2φ2 + ψ3φ3, (A.2)

(3 ⊗ 3)1′ = ψ1φ1 + ωψ2φ2 + ω2ψ3φ3, (A.3)

(3 ⊗ 3)1′′ = ψ1φ1 + ω2ψ2φ2 + ωψ3φ3, (A.4)

(3 ⊗ 3)3s
= (ψ2φ3 + ψ3φ2, ψ3φ1 + ψ1φ3, ψ1φ2 + ψ2φ1), (A.5)

(3 ⊗ 3)3a
= (ψ2φ3 − ψ3φ2, ψ3φ1 − ψ1φ3, ψ1φ2 − ψ2φ1), (A.6)

with ω = e
2πi
3 .

B. Higgs potential

In addition to the A4 singlet Higgs fields Φ and ∆L(R), we have introduced another scalar

Σ ∼ (2, 2, 0)(3) under the group GLR ⊗A4, so the extra Higgs potential involving Σ should

be added. The potential involving Φ and ∆L(R) preserves its form eq. (2.5) since they are

trivial representation of A4, i.e. Φ,∆L(R) ∼ 1, we will not write them here again. According

to the representation assignment of Σ, the invariant potential can be written as

V (Σ) = µ2
Σ(Σ†Σ)1 + λΣ

1 (Σ†Σ)1(Σ†Σ)1 + λΣ
2 (Σ†Σ)1′(Σ†Σ)1′′

+λΣ
3 (Σ†Σ)3s

(Σ†Σ)3s
+ λΣ

4 (Σ†Σ)3a
(Σ†Σ)3a

+iλΣ
5 (Σ†Σ)3s

(Σ†Σ)3a
, (B.1)

V (Φ,Σ) = λΦΣ
1 (Σ†Σ)1(Φ†Φ)1 + λΦΣ

2 (Σ†Φ)3(Φ†Σ)3

+λΦΣ
3 (Σ†Φ)3(Σ

†Φ)3 + h.c., (B.2)

V (∆L,∆R,Σ) = λ∆Σ
1 [tr(∆†

L∆L)1 + tr(∆†
R∆R)1](Σ†Σ)1

+λ∆Σ
2 Σ†

3

(

[∆L,∆
†
L]1 + [∆R,∆

†
R]1

)

Σ3. (B.3)
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There is no renormalizable term simultaneously involving Φ,∆L(R) and Σ,

V (Φ,∆L,∆R,Σ) = 0. (B.4)

So the total Higgs potential is given by

V = V (Φ,∆L,∆R) + V (Σ) + V (Φ,Σ) + V (∆L,∆R,Σ). (B.5)
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